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Abstract: N1-Alkylation of 1H-benzimidizole of the δ agonist
H-Dmt-Tic-NH-CH2-Bid with hydrophobic, aromatic, olefinic,
acid, ethyl ester, or amide (1-6) became δ antagonists (pA2 )
8.52-10.14). δ- and µ-Opioid receptor affinities were high (Kiδ
) 0.12-0.36 nM and Kiµ ) 0.44-1.42 nM). Only δ antagonism
(pA2 ) 8.52-10.14) was observed; µ agonism (IC50 ) 30-450
nM) was not correlated with changes in alkylating agent or δ
antagonism, and some compounds yielded mixed δ antago-
nism/µ agonism.

Numerous opioid peptides2 and nonpeptide opiates3-5

interact with opioid receptors. H-Dmt-Tic-OH,6 which
evolved from H-Tyr-Tic-OH,7 as a simplified form of TIP-
(P),8 represents the minimal sequence that selectively
interacts with δ-opioid receptors as a potent δ-antago-
nist. The dipeptide was transformed into a potent δ
agonist by replacing the carboxylic function with an
alkyl amide terminated with 1H-benzimidazole (H-Dmt-
Tic-NH-CH2-Bid).9,10 To restore the δ-opioid receptor
selectivity, an acidic moiety was introduced by alkyla-
tion of N1-benzimidazole, yielding H-Dmt-Tic-NH-CH2-
Bid(CH2-COOH),10 and whose pharmacological behavior
highlighted the role of benzimidazole-N1H in δ-receptor
interaction and activation. Similarly, the presence of a
nitrogen was required in C-terminally modified endo-
morphin-2 with naphthyl or isoquinolyl groups resulting
in mixed µ/δ agonists.11 To investigate the role of the
N1-benzimidazole on δ and µ bioactivity, alkylation with
various groups was initiated. All compounds reverted
to potent δ antagonists, and in several cases, µ agonism
increased.

Pseudopeptides were prepared stepwise by solution
peptide synthetic methods9 described in detail in Sup-
porting Information. In brief, mixed carbonic anhydride
coupling of tert-butyloxycarbonyl-glycine (Boc-Gly-OH)
with o-phenylendiamine gave intermediate monoamide,
which was converted without purification to the desired

1H-benzimidazol-2-yl-methyl)-carbamic acid tert-butyl
ester (Boc-NH-CH2-Bid) by cyclization and dehydration
in acetic acid (AcOH) in scheme. After N-terminal Boc
deprotection with TFA, H2N-CH2-Bid was condensed
with Boc-Tic-OH via WSC/HOBt. Alkylation of N1-Bid
was carried out by treatment of Boc-Tic-NH-CH2-Bid9

with K2CO3 and iodomethane, benzyl bromide, allyl
bromide, cyclopropylmethyl bromide, or ethyl bromoac-
etate.10 Boc-Tic-NH-CH2-Bid(R) (R ) alkyl groups) was
deprotected with TFA and condensed with Boc-Dmt-OH
via WSC/HOBt. Compound 6 was obtained from Boc-
protected 5 after hydrolysis with 1 N NaOH and
reaction with NH3 via mixed anhydrides. Final com-
pounds 1-6 were obtained after TFA treatment and
purified by preparative HPLC.

Compounds 1-6 (Table 1) had subnanomolar affinity
for δ-opioid receptors (Kiδ ) 0.12-0.36 nM); alkylation
decreased affinity by approximately 1 order of magni-
tude relative to the reference compounds H-Dmt-Tic-
NH-CH2-Bid (a) and H-Dmt-Tic-NH-CH2-Bid(CH2-
COOH) (b). µ-Opioid receptor affinity was within the
same order of magnitude as H-Dmt-Tic-NH-CH2-Bid,
and the lack of a carboxylic function caused a significant
increase in µ-opioid receptor affinity.6,15,18 Thus, the
analogues remained essentially neutral and nonselec-
tive, except 5 which was comparable to H-Dmt-Tic-NH-
CH2-Bid (a), but considerably less selective than H-Dmt-
Tic-NH-CH2-Bid(CH2-COOH) (b) (Table 1).

Alkylation transformed the δ agonist H-Dmt-Tic-NH-
CH2-Bid (IC50 ) 0.035 nM, MVD) (a) into δ antagonists
1-6 without effect on µ-opioid receptors (GPI). The
analogues demonstrated high δ antagonism (pA2 ) 8.52
to 10.14) without µ antagonism; a 15-fold difference in
µ-opioid agonism occurred among 1-6. Although the
alkylating agent per se does not appear important,
methyl 1 improved δ antagonism slightly more than the
bulky substituents (2-4), particularly the aromatic
benzyl group (2). Interestingly, a single methyl con-
verted naltrindole, an opiate δ antagonist, into a µ
agonist.12 Modification of the carboxylic function into
an ester (5) or amide (6) did not change δ antagonism,
suggesting these functional groups are weakly impli-
cated in δ-receptor interactions. Compounds 1-6 had
improved µ-opioid receptor affinity and agonism com-
pared to H-Dmt-Tic-NH-CH2-Bid(CH2-COOH) (b), sup-
porting evidence that the carboxylic function prevents
µ-opioid receptor activation.2a,6 Alkylation of N1H-benz-
imidazole did not modify the pharmacological activity
toward µ-opioid receptors, indicating that this nitrogen
is not implicated in µ-opioid receptor activation. Thus,
1-6 had a pattern of pharmacological activities as
mixed µ agonists/δ antagonists.

In summary, the alkyl groups (hydrophobic, aromatic,
olefinic, acid, ethyl ester, amide) modify δ-opioid recep-
tor activation which suggests the importance of N1H-
benzimidazole in these events. The allyl and cycloprop-
ylmethyl (3, 4) substituents induce antagonism when
present at the amino function of alkaloid opiates.13 The
δ-antagonism/µ-agonism profile of 1-6 is similar to the
bioactivity of opioids that elicit analgesia and display a
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lower degree of tolerance as seen with analgesics of the
µ-selective opiates.14

Binding assays were conducted as described else-
where using rat brain P2 synaptosomes preincubated
to remove endogenous opioids,6,15 and labeled with 2.1
nM [3H]deltorphin II (45.0 Ci/mmol, Amersham, Buck-
inghamshire, UK; KD ) 1.4 nM) for δ-opioid receptors,
and 3.5 nM [3H]DAMGO (50.0 Ci/mmol, Amersham,
Buckinghamshire, UK; KD ) 1.5 nM) for µ-opioid
receptors; the affinity constants (Ki) were calculated.17

In vitro activity utilized guinea-pig ileum (µ) and
mouse vas deferens (δ) in competitive bioassays.6 An-
tagonism was the shift of deltorphin C (MVD) and
dermorphin (GPI) log(concentration)-response curve to
the right; pA2 values were determined using the Schild
Plot.18 Agonism was the inhibition of the electrically
evoked twitch; the IC50 values (nM) represent the mean
( SE of not less than six tissue samples.
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